Partie B

Mesure d'une conductivité thermique

L'espace est rapporté, en coordonnées cartésiennes, à un repère orthonormé direct (Ox, Oy, Oz) de base $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$.

Un cylindre circulaire droit, homogène, isotrope et d'axe z'z, est limité par deux sections droites, de rayon r, orthogonales à l'axe z'z et séparées approximativement par la distance L.

Une de ses deux extrémités $(z \approx 0)$ est chauffée par effet Joule grâce à un résistor, de résistance $R_{\acute{e}l}$, soumis à une tension E constante et parcouru par un courant I. L'autre extrémité $(z \approx L)$ est refroidie grâce à une circulation d'eau froide. Grâce à ces sources, les sections terminales sont maintenues à des températures constantes respectives $T(z \approx 0) = T_o$ et $T(z \approx L) = T_L$, avec $T_o > T_L$.

De petits capteurs, insérés dans des cavités creusées dans le matériau, permettent de mesurer la température pour diverses valeurs de z.

Ce barreau, constitué d'un matériau de conductivité thermique λ constante et uniforme, est supposé parfaitement calorifugé sur toute sa surface. La conduction thermique, envisagée en régime permanent et stationnaire, est unidimensionnelle, unidirectionnelle et parallèle à l'axe z'z: les surfaces isothermes sont planes et perpendiculaires à cet axe (figure **B.1**).

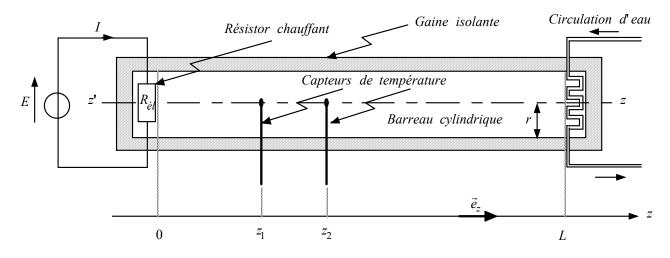


Figure **B.1**

Soit $\Phi_{th}(z)$ le flux thermique (ou puissance) qui traverse, à l'abscisse z, une section droite, d'aire S. Le vecteur associé au flux est le vecteur densité de courant thermique \vec{j}_{th} , lié à la température par la loi de Fourier : $\vec{j}_{th}(x,y,z,t) = -\lambda$ grad T(x,y,z,t), loi qui s'écrit, compte tenu des hypothèses énoncées plus haut :

$$\vec{j}_{th}(z) = j_{th}(z) \vec{e}_z = -\lambda \frac{dT(z)}{dz} \vec{e}_z$$

I. Généralités

- 1. Rappeler les unités des grandeurs \vec{j}_{th} et λ .
- **2.** Rappeler la relation qui lie $\Phi_{th}(z)$ et $j_{th}(z)$.
- **3.** Déterminer, en fonction de E et $R_{\ell l}$, la puissance électrique $P_{\ell l}$ reçue par le résistor et dégradée en puissance thermique (effet Joule).
- **4.** Sachant que cette puissance est intégralement transmise au barreau, approximativement à l'abscisse $z \approx 0$, exprimer le vecteur densité de courant thermique \vec{j}_{th} ($z \approx 0$) en fonction des grandeurs E, $R_{\ell l}$ et r (rayon du cylindre).
- **5.** Il n'y a aucune accumulation d'énergie en tout point du matériau. Montrer que le bilan thermique sur un petit élément volumique de matériau, d'aire S et d'épaisseur dz, situé entre les abscisses z et z+dz, permet de montrer que la température T(z) est une fonction affine de z, à l'intérieur du barreau.

Ce dernier résultat (§ **B.I.5.**) sera admis pour la suite de l'exercice

6. En déduire que le vecteur densité de courant thermique et le gradient de température sont uniformes en tout point du barreau tel que : $0 \le z \le L$.

II. Mesure de la conductivité thermique

- 1. Les capteurs permettent de repérer les températures suivantes : $T(z_1) = T_1$ et $T(z_2) = T_2$.
 - a) Exprimer le gradient de température en fonction de T_1 , T_2 , z_1 et z_2 .
 - **b)** Tracer l'allure de la courbe représentative de cette fonction T(z).
- **2.** Application numérique : E = 6.0 V; $R_{\acute{e}l} = 10 \Omega$; $r = 1.0 \times 10^{-2} \text{ m}$; $L = 4.0 \times 10^{-1} \text{ m}$; $z_1 = 1.0 \times 10^{-1} \text{ m}$; $z_2 = 2.0 \times 10^{-1} \text{ m}$; $T_1 = 330 \text{ K}$; $T_2 = 320 \text{ K}$.
 - a) Calculer la conductivité thermique λ du matériau.
 - **b)** Évaluer les températures approximativement attendues aux extrémités : T_o en $z \approx 0$ et T_L en $z \approx L$.
 - c) Déterminer la puissance thermique évacuée par l'eau de refroidissement au cours de la traversée du serpentin, en $z \approx L$.
 - d) La résistance thermique R_{th} du barreau est définie par l'égalité $(T_o T_L) = R_{th} \Phi_{th}$. Calculer la résistance thermique linéique r_{th} du barreau (résistance thermique par unité de longueur).